Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.11.22268981

ABSTRACT

Background Mutations in the receptor binding domain of the SARS-CoV-2 Spike protein are associated with increased transmission or substantial reductions in vaccine efficacy, including in the recently described Omicron variant. The changing frequencies of these mutations combined with their differing susceptibility to available therapies have posed significant problems for clinicians and public health professionals. Objective To develop an assay capable of rapidly and accurately identifying variants including Omicron in clinical specimens to enable case tracking and/or selection of appropriate clinical treatment. Study Design Using three duplex RT-ddPCR reactions targeting four amino acids, we tested 419 positive clinical specimens from February to December 2021 during a period of rapidly shifting variant prevalences and compared genotyping results to genome sequences for each sample, determining the sensitivity and specificity of the assay for each variant. Results Mutation determinations for 99.7% of detected samples agree with NGS data for those samples, and are accurate despite wide variation in RNA concentration and potential confounding factors like transport medium, presence of additional respiratory viruses, and additional mutations in primer and probe sequences. The assay accurately identified the first 15 Omicron variants in our laboratory including the first Omicron in Washington State and discriminated against S-gene dropout Delta specimen. Conclusion We describe an accurate, precise, and specific RT-ddPCR assay for variant detection that remains robust despite being designed prior the emergence of Delta and Omicron variants. The assay can quickly identify mutations in current and past SARS-CoV-2 variants, and can be adapted to future mutations.


Subject(s)
Severe Acute Respiratory Syndrome
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.27.21262754

ABSTRACT

ImportanceSARS-CoV-2 viral trajectory has not been well-characterized in documented incident infections. These data will inform SARS-CoV-2 natural history, transmission dynamics, prevention practices, and therapeutic development. ObjectiveTo prospectively characterize early SARS-CoV-2 viral shedding in persons with incident infection. DesignProspective cohort study. SettingSecondary data analysis from a multicenter study in the U.S. ParticipantsThe samples derived from a randomized controlled trial of 829 community-based asymptomatic participants recently exposed (<96 hours) to persons with SARS-CoV-2. Participants collected daily mid-turbinate swabs for SARS-CoV-2 detection by polymerase-chain-reaction and symptom diaries for 14-days. Persons with negative swab for SARS-CoV-2 at baseline who developed infection during the study were included in the analysis. ExposureLaboratory-confirmed SARS-CoV-2 infection. Main outcomes and measuresThe observed SARS-CoV-2 viral shedding characteristics were summarized and shedding trajectories were examined using a piece-wise linear mixed-effects modeling. Whole viral genome sequencing was performed on samples with cycle threshold (Ct)<34. ResultsNinety-seven persons (57% women, median age 37-years) developed incident infections during 14-days of follow-up. Two-hundred fifteen sequenced samples were assigned to 15 lineages that belonged to the G614 variant. Forty-two (43%), 18(19%), and 31(32%) participants had viral shedding for 1 day, 2-6 days, and [≥]7 days, with median peak viral load Ct of 38.5, 36.7, and 18.3, respectively. Six (6%) participants had 1-6 days of observed viral shedding with censored duration. The peak average viral load was observed on day 3 of viral shedding. The average Ct value was lower, indicating higher viral load, in persons reporting COVID-19 symptoms than asymptomatic. Using the statistical model, the median time from shedding onset to peak viral load was 1.4 days followed by a median of 9.7 days before clearance. Conclusions and RelevanceIncident SARS-CoV-2 G614 infection resulted in a rapid viral load peak followed by slower decay and positive correlation between peak viral load and shedding duration; duration of shedding was heterogeneous. This longitudinal evaluation of the SARS-CoV-2 G614 variant with frequent molecular testing may serve as a reference for comparing emergent viral lineages to inform clinical trial designs and public health strategies to contain the spread of the virus. KEY POINTSO_ST_ABSQuestionC_ST_ABSWhat are the early SARS-CoV-2 G614 viral shedding characteristics in persons with incident infection? FindingsIn this prospective cohort of 97 community-based participants who collected daily mid-turbinate swabs for SARS-CoV-2 detection after recent exposure to SARS-CoV-2, viral trajectory was characterized by a rapid peak followed by slower decay. Peak viral load correlated positively with symptoms. The duration of shedding was heterogeneous. MeaningA detailed description of the SARS-CoV-2 G614 viral shedding trajectory serves as baseline for comparison to new viral variants of concern and inform models for the planning of clinical trials and transmission dynamics to end this pandemic.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.27.21256149

ABSTRACT

Rapid dissemination of SARS-CoV-2 sequencing data to public repositories has enabled widespread study of viral genomes, but studies of longitudinal specimens from infected persons are relatively limited. Analysis of longitudinal specimens enables understanding of how host immune pressures drive viral evolution in vivo. Here we performed sequencing of 49 longitudinal SARS-CoV-2-positive samples from 20 patients in Washington State collected between March and September of 2020. Viral loads declined over time with an average increase in RT-PCR cycle threshold (Ct) of 0.87 per day. We found that there was negligible change in SARS-CoV-2 consensus sequences over time, but identified a number of nonsynonymous variants at low frequencies across the genome. We observed enrichment for a relatively small number of these variants, all of which are now seen in consensus genomes across the globe at low prevalence. In one patient, we saw rapid emergence of various low-level deletion variants at the N-terminal domain of the spike glycoprotein, some of which have previously been shown to be associated with reduced neutralization potency from sera. In a subset of samples that were sequenced using metagenomic methods, differential gene expression analysis showed a downregulation of cytoskeletal genes that was consistent with a loss of ciliated epithelium during infection and recovery. We also identified co-occurrence of bacterial species in samples from multiple hospitalized individuals. These results demonstrate that the intrahost genetic composition of SARS-CoV-2 is dynamic during the course of COVID-19, and highlight the need for continued surveillance and deep sequencing of minor variants.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.10.21253321

ABSTRACT

Real-time epidemiological tracking of variants of interest can help limit the spread of more contagious forms of SARS-CoV-2, such as those containing the N501Y mutation. Typically, genetic sequencing is required to be able to track variants of interest in real-time. However, sequencing can take time and may not be accessible in all laboratories. Genotyping by RT-ddPCR offers an alternative to sequencing to rapidly detect variants of concern through discrimination of specific mutations such as N501Y that is associated with increased transmissibility. Here we describe the first cases of the B.1.1.7 lineage of SARS-CoV-2 detected in Washington State by using a combination of RT-PCR, RT-ddPCR, and next-generation sequencing. We screened 1,035 samples positive for SARS-CoV-2 by our CDC-based laboratory developed assay using ThermoFishers multiplex RT-PCR COVID-19 assay over four weeks from late December 2020 to early January 2021. S gene dropout candidates were subsequently assayed by RT-ddPCR to confirm four mutations within the S gene associated with the B.1.1.7 lineage: a deletion at amino acid (AA) 69-70 (ACATGT), deletion at AA 145, (TTA), N501Y mutation (TAT), and S982A mutation (GCA). All four targets were detected in two specimens, and follow-up sequencing revealed a total of 10 mutations in the S gene and phylogenetic clustering within the B.1.1.7 lineage. As variants of concern become increasingly prevalent, molecular diagnostic tools like RT-ddPCR can be utilized to quickly, accurately, and sensitively distinguish more contagious lineages of SARS-CoV-2.


Subject(s)
COVID-19
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.13.20173161

ABSTRACT

The development of vaccines against SARS-CoV-2 would be greatly facilitated by the identification of immunological correlates of protection in humans. However, to date, studies on protective immunity have only been performed in animal models and correlates of protection have not been established in humans. Here, we describe an outbreak of SARS-CoV-2 on a fishing vessel associated with a high attack rate. Predeparture serological and viral RT-PCR testing along with repeat testing after return to shore was available for 120 of the 122 persons on board over a median follow-up of 32.5 days (range 18.8 to 50.5 days). A total of 104 individuals had an RT-PCR positive viral test with Ct <35 or seroconverted during the follow-up period, yielding an attack rate on board of 85.2% (104/122 individuals). Metagenomic sequencing of 39 viral genomes suggested the outbreak originated largely from a single viral clade. Only three crewmembers tested seropositive prior to the boats departure in initial serological screening and also had neutralizing and spike-reactive antibodies in follow-up assays. None of these crewmembers with neutralizing antibody titers showed evidence of bona fide viral infection or experienced any symptoms during the viral outbreak. Therefore, the presence of neutralizing antibodies from prior infection was significantly associated with protection against re-infection (Fishers exact test, p=0.002).

6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.03.234559

ABSTRACT

RNA viruses that replicate in the cytoplasm often disrupt nucleocytoplasmic transport to preferentially translate their own transcripts and prevent host antiviral responses. The Sarbecovirus accessory protein ORF6 has previously been shown to be the major inhibitor of interferon production in both SARS-CoV and SARS-CoV-2. SARS-CoV-2 ORF6 was recently shown to co-purify with the host mRNA export factors Rae1 and Nup98. Here, we demonstrate SARS-CoV-2 ORF6 strongly represses protein expression of co-transfected reporter constructs and imprisons host mRNA in the nucleus, which is associated with its ability to co-purify with Rae1 and Nup98. These protein-protein interactions map to the C-terminus of ORF6 and can be abolished by a single amino acid mutation in Met58. Overexpression of Rae1 restores reporter expression in the presence of SARS-CoV-2 ORF6. We further identify an ORF6 mutant containing a 9-amino acid deletion, ORF6 {Delta}22-30, in multiple SARS-CoV-2 clinical isolates that can still downregulate the expression of a co-transfected reporter and interact with Rae1 and Nup98. SARS-CoV ORF6 also interacts with Rae1 and Nup98. However, SARS-CoV-2 ORF6 more strongly co-purifies with Rae1 and Nup98 and results in significantly reduced expression of reporter proteins compared to SARS-CoV ORF6, a potential mechanism for the delayed symptom onset and pre-symptomatic transmission uniquely associated with the SARS-CoV-2 pandemic. ImportanceSARS-CoV-2, the causative agent of COVID-19, is an RNA virus with a large genome that encodes accessory proteins. While these accessory proteins are not required for growth in vitro, they can contribute to the pathogenicity of the virus. One of SARS-CoV-2s accessory proteins, ORF6, was recently shown to co-purify with two host proteins, Rae1 and Nup98, involved in mRNA nuclear export. We demonstrate SARS-CoV-2 ORF6 interaction with these proteins is associated with reduced expression of a reporter protein and accumulation of poly-A mRNA within the nucleus. SARS-CoV ORF6 also shows the same interactions with Rae1 and Nup98. However, SARS-CoV-2 ORF6 more strongly represses reporter expression and co-purifies with Rae1 and Nup98 compared to SARS-CoV ORF6. The ability of SARS-CoV-2 ORF6 to more strongly disrupt nucleocytoplasmic transport than SARS-CoV ORF6 may partially explain critical differences in clinical presentation between the two viruses.


Subject(s)
COVID-19
7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.22.165225

ABSTRACT

Despite limited genomic diversity, SARS-CoV-2 has shown a wide range of clinical manifestations in different patient populations. The mechanisms behind these host differences are still unclear. Here, we examined host response gene expression across infection status, viral load, age, and sex among shotgun RNA-sequencing profiles of nasopharyngeal swabs from 430 individuals with PCR-confirmed SARS-CoV-2 and 54 negative controls. SARS-CoV-2 induced a strong antiviral response with upregulation of antiviral factors such as OAS1-3 and IFIT1-3, and Th1 chemokines CXCL9/10/11, as well as a reduction in transcription of ribosomal proteins. SARS-CoV-2 culture in human airway epithelial cultures replicated the in vivo antiviral host response. Patient-matched longitudinal specimens (mean elapsed time = 6.3 days) demonstrated reduction in interferon-induced transcription, recovery of transcription of ribosomal proteins, and initiation of wound healing and humoral immune responses. Expression of interferon-responsive genes, including ACE2, increased as a function of viral load, while transcripts for B cell-specific proteins and neutrophil chemokines were elevated in patients with lower viral load. Older individuals had reduced expression of Th1 chemokines CXCL9/10/11 and their cognate receptor, CXCR3, as well as CD8A and granzyme B, suggesting deficiencies in trafficking and/or function of cytotoxic T cells and natural killer (NK) cells. Relative to females, males had reduced B and NK cell-specific transcripts and an increase in inhibitors of NF-{kappa}B signaling, possibly inappropriately throttling antiviral responses. Collectively, our data demonstrate that host responses to SARS-CoV-2 are dependent on viral load and infection time course, with observed differences due to age and sex that may contribute to disease severity.

8.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.24.20074559

ABSTRACT

Multiple laboratory developed tests and commercially available assays have emerged to meet diagnostic needs related to the SARS-CoV-2 pandemic. To date, there is limited comparison data for these different testing platforms. We compared the analytical performance of a laboratory developed test (LDT) developed in our clinical laboratory based on CDC primer sets and four commercially available, FDA emergency use authorized assays for SARS-CoV-2 (Cepheid, DiaSorin, Hologic Panther, and Roche Cobas) on a total of 169 nasopharyngeal swabs. The LDT and Cepheid Xpert Xpress SARS-CoV-2 assays were the most sensitive assays for SARS-CoV-2 with 100% agreement across specimens. The Hologic Panther Fusion, DiaSorin Simplexa, and Roche Cobas 6800 only failed to detect positive specimens near the limit of detection of our CDC-based LDT assay. All assays were 100% specific, using our CDC-based LDT as the gold standard. Our results provide initial test performance characteristics for SARS-CoV-2 RT-PCR and highlight the importance of having multiple viral detection testing platforms available in a public health emergency.


Subject(s)
Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL